Phenylthiourea Specifically Reduces Zebrafish Eye Size
نویسندگان
چکیده
Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos.
منابع مشابه
Thyroid Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner
Zebrafish embryos are treated with anti-thyroidal compounds, such as phenylthiourea, to inhibit melanogenesis. However, the mechanism whereby the thyroidal system controls melanin synthesis has not been assessed in detail. In this work, we tested the effect of the administration of diets supplemented with T3 (500μg/g food) on the pigment pattern of adult zebrafish. Oral T3 induced a pronounced ...
متن کاملRetinoic Acid Protects and Rescues the Development of Zebrafish Embryonic Retinal Photoreceptor Cells from Exposure to Paclobutrazol
Paclobutrazol (PBZ) is a widely used fungicide that shows toxicity to aquatic embryos, probably through rain-wash. Here, we specifically focus on its toxic effect on eye development in zebrafish, as well as the role of retinoic acid (RA), a metabolite of vitamin A that controls proliferation and differentiation of retinal photoreceptor cells, in this toxicity. Embryos were exposed to PBZ with o...
متن کاملPhenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo.
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that can be activated by a diverse synthetic and naturally-occurring chemicals, such as the halogenated aromatic hydrocarbons (HAHs) and the non-halogenated polycyclic aromatic hydrocarbons (PAHs). The liganded AHR modulates the genetic activity of a variety of xenobiotic-responsive genes, including cytochrome P4501A...
متن کاملZebrafish mab21l2 is specifically expressed in the presumptive eye and tectum from early somitogenesis onwards
Random screening for tissue specific genes in zebrafish by in situ hybridization led us to isolate a gene which showed highly restricted expression in the developing eyes and midbrain at somitogenesis stages. This gene was very similar to mouse and human mab21l2. The characteristic expression pattern of mab21l2 facilitates a detailed description of the morphogenesis of the eyes and midbrain in ...
متن کاملTwo-photon axotomy and time-lapse confocal imaging in live zebrafish embryos
Zebrafish have long been utilized to study the cellular and molecular mechanisms of development by time-lapse imaging of the living transparent embryo. Here we describe a method to mount zebrafish embryos for long-term imaging and demonstrate how to automate the capture of time-lapse images using a confocal microscope. We also describe a method to create controlled, precise damage to individual...
متن کامل